
Theorem: For a polynomial 𝑥5 + 𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒 = 0 there is no finite formula using only a, 
b, c, d, e, all complex numbers, addition, multiplication, division, and taking n’th roots, that always 
returns a root of that polynomial. 

The proof will make sense if I do some examples first by proving weaker results so you can get the 
idea. 

Proposition 1: There is no formula for a quadratic (degree 2 polynomial) equation using only addition, 
subtraction, multiplication and division of the coefficients. 

Proof: The main proof builds on the idea we are about to use. Suppose there were, then we would 
have a continuous function from the coefficients to the roots that is single valued and therefore picks 
a root. 

Now suppose this hypothetical formula lets us find the root 1 of 𝑥2 − 1 = 0, or the root -1 as it would 
be the same idea. Now write the equation above as 𝑥2 = 1. Now we know that if we have 𝑥2 = 𝑒𝑖𝜃 the 

roots are 𝑥 = ±𝑒
𝑖𝜃

2 . Now lets look at how the root 1 changes as we vary ϑ continuously from 0 to 2π. 
What would end up happening is the following: 

𝑥2 = 𝑒𝑖0 Roots: 1,−1 
𝑥2 = 𝑒𝑖0.1 Roots: 𝑒𝑖0.05, −𝑒𝑖0.05 

… … 
𝑥2 = 𝑒𝑖2𝜋 Roots: 𝑒𝑖𝜋 = −1,−𝑒𝑖𝜋 = 1 

The problem is, now, that the root returned by the formula must be the one on the left in the table 
above – it cannot change at any point in the process to being the one on the right because otherwise it 
would not be continuous. Therefore our formula would return both 1 and -1 for 𝑥2 = 1 but our formula 
is single valued. Contradiction. 

Definition 1: Suppose we have a function of one variable involving addition, multiplication and 
division and roots. Then a bad point of this function is a point such that any of the roots inside it or 
denominators inside it are 0. 

Note that by standard power series properties, if we are not at a bad point we are adding, multiplying, 
and composing functions that are either roots or fractions, each of which has a local taylor series 
around non-zero inputs, and by level 6 power series properties the composition of functions with a 
local taylor series has a local taylor series. 

Definition 2: Suppose we have a function of one variable involving addition, multiplication and 
division and roots. Then its nesting depth is how many layers of “root inside a root inside a root…” are 

allowed. For example, 𝑥2+2

𝑥7−3𝑥+3
 has nesting depth 0, 𝑥4 +√

1+𝑥3

𝑥5
 has nesting depth 1, and a function like 

2𝑥6 + √𝜋2𝑥4 + √𝑥
4

−√
1+𝑥3

𝑥5

3

 has nesting depth 2 since it has roots inside roots but not roots inside 

roots inside roots. Nesting depth may depend on how we write the function but this will not matter for 
our purposes. 

Lemma: Suppose we have a function of one variable involving addition, multiplication and division 
and roots that contains at least one non-bad point and is not always zero and has finite nesting depth. 
Then the “characteristic set” of the function, ie the union of its zeroes and its bad points are isolated, 



meaning that for all such points in the union, there is a circle around that point such that no other 
points are in the union, and that for all points in C not in the union, there is a circle around it with no 
points in the union. 

Why this is useful: In the quadratic argument above if we could cross 0 we could switch to the 
negative square root and still be continuous so it would not work. We need to show that there is a path 
that leads to the contradiction without crossing 0. 

Proof of lemma: We will do this by induction on the nesting depth. 

For nesting depth 0, the most complicated expression we can get is one polynomial divided by 
another polynomial. The characteristic set of this function roots of the numerator or the denominator 
polynomial. There are finitely many of these, and finite sets of points are clearly isolated – The set of 
distances from one point to all points in the set that are not that point has a minimum since it is the 
minimum of finitely many finite things so with a ball of a smaller radius than that you are good. 

Now suppose this theorem holds for all nesting depths up to k. Then a nesting depth k+1 expression 

looks like (in the most complicated case) 
𝑓(𝑥)+ √𝑝1

𝑖1 + √𝑝2
𝑖2 +⋯+ √𝑝𝑛

𝑖𝑛

𝑔(𝑥)+ √𝑞1
𝑗1 + √𝑞2

𝑗2 +⋯+ √𝑞𝑚
𝑗𝑚

 where f and g are functions with 

nesting depth 0 and 𝑝𝑖, 𝑞𝑖 are expressions of nesting depth k and 𝑖𝑟 , 𝑗𝑟  are integers greater than 1. Now 
any point in the characteristic set of this function is of one of the following types: 

- In the characteristic set of one of the p’s or q’s (automatically a bad point) 
- In the characteristic set of f or g (automatically a bad point) 
- A zero of the denominator (automatically a bad point) 
- A zero of the numerator (not necessarily a bad point but still in the characteristic set) 

We know that the first two are isolated sets by the induction hypothesis. Now suppose we are 
considering the numerator or the denominator and it is at a point that is not a bad point of the 
numerator or denominator, then it has a local taylor series. If this point is a zero point, then write it as 
a taylor series: 𝑐𝑘(𝑥 − 𝑥0)

𝑘 + 𝑐𝑘+1(𝑥 − 𝑥0)
𝑘+1 +⋯ = (𝑥 − 𝑥0)

𝑘(𝑐𝑘 + 𝑐𝑘+1(𝑥 − 𝑥0) + ⋯), where 𝑐𝑘 is 
the first non-zero term (I prove shortly a non-zero term always exists). Then 𝑐𝑘 + 𝑐𝑘+1(𝑥 − 𝑥0) + ⋯ is 
not 0 at 𝑥0 and continuous there and thus not 0 locally around 𝑥0. If we are not at a 0 point then apply 
the argument above with k is 0. Now I just have to prove that we don’t have an all-zero taylor series 
about that point. 

Now suppose the taylor series is all zero at a point, then since the taylor series is valid in an interval 
around that point the function is zero in an interval around that point. Let Z be the set of points with an 
all zero taylor series about it – assume this is non-empty for a contradiction. This taylor series is 
known to be valid on some interval – it converges everywhere and I have not claimed it is valid 
everywhere (although I will show this) but merely only valid on some circle with radius R. Then Z is 
open, ie has the property that for every point in Z there is a circle of points around it in Z, for example 

with a circle of radius 𝑅
2

. Now consider U to be the set of C without the bad points, then U is open by 

the induction hypothesis (At any point a circle around it avoids a bad point). Also, if U\Z is non-empty 
then U\Z is open – For any point with a non-zero taylor series since the first non-zero term is 
continuous at that point it is non-zero in a ball around itself. Therefore U is a disjoint union of two open 
sets. Therefore U is a disjoint union of two open sets in ℂ. Now build a line segment from any point A in 
Z to any point B in U\Z. By the fact that ℂ\U is isolated this line segment contains finitely many points 



in U. Since the points are U are isolated we can dodge them by putting small semicircles in our path to 
get a continuous path A to B. Now consider the path as a continuous function F that ranges from 0 to A 
to 1 at B, for example by length travelled divided by total length. Now for any point C on the path in U, it 
must have be that there is a disc around that point in U, and thus an open interval around t must be a 
part of the path that is contained in A since the path is continuous so it does not jump out of that disc. 
But then at the point x in the path where 𝐹(𝑥) = 𝑆𝑢𝑝(𝐹(𝑡), 𝑡 ∈ 𝐴), x cannot be in A otherwise it would 
be in A at a larger point, so x is in B, but then x is also in B in an interval around it, so we do not have the 
least upper bound of the points in A anymore. Contradiction, therefore one of Z and U\Z is empty, and 
if Z=U then the characteristic set is all of ℂ which contradicts the hypothesis of the lemma. 

Therefore to prove the lemma all we need now is to prove that a finite union of sets of isolated points 
in ℂ is isolated. Luckily this is easy. Suppose we have a union of N sets of isolated points. Then at each 
point, for each of the N sets, that point is either one of the points that set and thus has a disc around it 
with no points, or simply has an interval around it with no points without being a point in that set. 
Either way, it has the kind of disc we want, so the intersection of all N of those discs is still a disc as N 
is finite and it is exactly the kind of disc we want. 

Now we have this lemma. So suppose we have a function G that takes in the coefficients and outputs 

a number and its rule only involves +, -, *, /, √𝑥𝑛 , and we consider the obvious function F from the roots 
to the coefficients (just by expanding the polynomial in terms of its roots). Now if we keep all but one 

root constant, F is a function of a single variable using just  +, -, *, /, √𝑥𝑛 , so by the lemma it has 
isolated bad points. This means we can move a root around in such a way that we dodge a bad point. 

So here is what happens now. When we suppose we have a quintic formula we will suppose that it 
works at all its non-bad points, as if we can disprove that we are done. We make the same assumption 
for propositions we do about lower degree polynomials. 

So now suppose we are at a non-bad point, then we can swap any two roots continuously in such a 
way that we do not cross a bad point and the roots do not cross. Since bad points are isolated, we can 
wiggle our two roots around in balls (their “safe balls”) and still be at a non-bad point. Also, if we start 
with a bad point, we can get a root from any point to any other while keeping the other ones constant 
by simply going in a straight line and using a semicircle to dodge bad points or other roots (since we 
don’t want roots to cross eachother, ok as there are finitely many of them). So to swap roots 1 and 2, 
move root 1 to somewhere that is not a bad point when keeping roots 2, 3, etc constant inside the safe 
ball of root 2, move root 2 to a non-bad point in the safe ball of where root 1 used to be (all balls have 
non-bad points by the isolation property). Now we can move root 2 to where root 1 was and root 1 to 
where root 2 was, and we never a bad point as now only root 1 is moved as everything is in exactly one 
safe ball – and the order of the roots does not matter as the coefficients remain unchanged. 

We now prove a proposition about cubics and quartics to make it make sense what we will do with the 
quintic as it would not make sense if we straight up did it. Note that if in any of our hypothetical 
formulae that we suppose exist in future proofs, if the stuff we are saying is non-zero were always zero 
the formula would either be invalid or that part would be redundant and we could just remove it, so 
I’m not proving “oh a formula exists but that stuff must be always zero”. 

Proposition 2: Any formula for a cubic (𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0) using only +, *, /, the complex 
numbers, and n’th roots must have nesting depth at least 2. 



A formula with nesting depth 2 exists but it is very complicated (image below) so generally numerical 
methods are more practical. 

Image of the cubic formula for 
𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0, where which root we get depends on which cube root we use, noting that 
changing which square root we use does not change the result but merely the order of the terms. To 
prove this works, you can plug the formula into the polynomial and expand everything and check that 
it is 0. If you want to actually do this, then good luck. Obviously I’m not going to do it. 

Proof (note that this concept is a bit difficult to understand): Suppose we had a formula with 
nesting depth 1 – since 0 can be ruled out by the quadratic argument. Then pick a root in the formula 
and call the stuff inside it X. X is continuous and single valued, since it just uses the basic math 
operations, and it is continuous along any path we use to permute the roots because we spent five 
million years ensuring that. Now take the roots and label them 𝑟1, 𝑟2 and 𝑟3 and suppose that at this 
particular point our hypothetical formula outputs 𝑟1. Now swap 𝑟1 and 𝑟2 continuously such that X 
avoids 0 and infinity. When we do this, X will go back to where it started – X is a function symmetric in 
the roots and we merely reordered the roots. If X is inside an n’th root, and wrapped around the origin 

m times, then √𝑋𝑛  will move an angle 2𝜋𝑚

𝑛
 anticlockwise. This is why we needed to make sure we do 

not touch the origin – we either wrap around it some times or we do not, and we do not blow up to 
infinity. Now swap 𝑟2 and 𝑟3. This will cause X to possibly or possibly not wrap around the origin. Lets 

say it wraps p times anticlockwise, then √𝑋𝑛  will have moved a total angle of 2𝜋𝑚+𝑝

𝑛
 anticlockwise. 

Now permute the roots in cycle notation by doing the permutation (2 3)(1 2)(2 3)(1 2). This is the cycle 

(1 2 3) so it leaves the roots different, but √𝑋𝑛 will have moved a total angle of 2𝜋 𝑚+𝑝−𝑝−𝑚

𝑛
= 0 

anticlockwise. This is a problem because all of the roots in our hypothetical equation, and thus the 
value of the equation, will be the same. We supposed it returned 𝑟1, it never switched to returning 
another root since the roots moved continuously and never crossed and the function from the roots to 
the coefficients to X is continuous, and the roots never crossed to allow it to jump. So our formula 
returns 𝑟1, which moved, but also returns the same thing that it returned at the start since it ended up 
back where it started. Contradiction. 

Proposition 3: Any formula for a quartic (𝑥4 + 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0) using only +, *, /, the complex 
numbers, and n’th roots must have nesting depth at least 2. 

For interest, there is a formula as follows: 
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Where ±1 and ∓1 have opposite signs and ±2 is independent of them Two independent instances of plusminus 
gives us four possibilities like we want. Obviously, numerical methods are more practical. This is the exact form 
for the larger root of 𝑥4 − 𝑥 − 1 = 0: 



Image of the exact form from wolframalpha 

This actually has nesting depth 4 but we will prove at least 3 is needed. 

Proof: 

The idea we did for proposition 2 (Permutation A, B, A backwards then B backwards) is called a 
commutator. This is commonly used on the Rubik’s cube. We will exploit this idea more. 

So we can do a commutator to rule out nesting depth 1 like we did for the cubic. This leaves any roots 
without roots inside them unchanged, but we do not know what it does to everything inside the root 
with a nesting depth 1 expression inside it – we just know that after a commutator the stuff inside the 
root is back to where it started, but it could have wrapped around the origin in the process. But now 
lets do a commutator of commutators and track the nesting depth 1 expressions. We know a 
commutator of swaps is a 3-cycle. A commutator of three cycles: (1 2 3)(2 3 4)(1 3 2)(2 4 3) =
(1 4)(2 3). This will make, for the same reason, the number of total times the nesting depth 1 
expressions wrap around the origin be 0, therefore any nesting depth 2 expression will be back where 
it started and we have the same contradiction. 

Proof of the main theorem: 

This is easy once you have understood the concepts used above. We just need to rule out any finite 
nesting depth. But we can have an infinite chain of commutators of commutators of commutators of 
… This is because a certain commutator of three cycles has the property 
(1 2 3)(1 4 5)(1 3 2)(1 5 4) = (1 2 4), which is another 3-cycle. Therefore we can make a chain as 
long as we want where at each step we just have a 3-cycle, and we can pick this in a way that it moves 
the root our hypothetical formula outputs. We can therefore get the same contradiction. This 
completes the proof. 

Addendum: Even if we include sin, cos and exp, there is still no formula, as the assumption was 
merely continuity, and these functions have taylor series that work everywhere so the assumptions of 
the lemma still work.  


